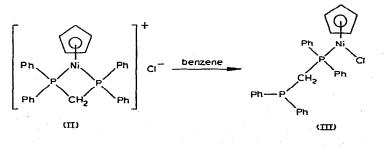
Preliminary communication

π -Cyclopentadienyls of nickel(II) V. The preparation and properties of $[\pi$ -C₅H₅NiPh₂P(CH₂)_nPPh₂]⁺Cl⁻

FUMIE SATO and MASAO SATO

Department of Chemical Engineering, Tokyo Institute of Technology, Tokyo (Japan) (Received November 2nd, 1971)

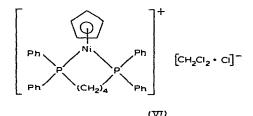
It has recently been shown that π -cyclopentadienyltri-n-butylphosphinenickel chloride (I) reacts with tri-n-butylphosphine to give the ionic π -cyclopentadienylbis(tri-n-butylphosphine)nickel chloride¹.


 $\pi - C_5 H_5 \text{NiPBu}_3 \text{Cl} + PBu_3 \xrightarrow[\text{solvent}]{} [\pi - C_5 H_5 \text{Ni}(PBu_3)_2]^+ \text{Cl}^-$ (I)

In view of the above results, the complexes of the type $[\pi - C_5 H_5 Ni \cdot Ph_2 P(CH_2)_n - PPh_2]^*Cl^*$ might be expected to be formed in the reaction of (I) with Ph_2 P(CH_2)_n PPh_2.

The n-hexane solution of (I), was treated with the dichloromethane solution of $Ph_2PCH_2PPh_2$, the brownish green precipitate appeared. This product had a molecular formula $[\pi - C_5H_5Ni \cdot Ph_2PCH_2PPh_2]^+[CH_2Cl_2 \cdot Cl]^-$, m.p. 125–128° (Found: C, 60.23; H, 4.64; Cl, 16.72. $C_{31}H_{29}Cl_3NiP_2$ calcd.: C, 59.22; H, 4.62; Cl, 16.95%).

Based on IR and NMR spectra the product was formulated as π -cyclopentadienylmethylenebis(diphenylphosphine)nickel chloride (II). The NMR spectrum of (II) in CD₃OD solution shows bands at τ 2.1-2.6 due to the phenyl protons of methylenebis-(diphenylphosphine), singlet at τ 4.23 due to the π -cyclopentadienyl protons, singlet at τ 4.57 due to the solvated dichloromethane protons and triplet at τ 5.23(J(PH) = 10Hz) due to the methylene protons of methylenebis(diphenylphosphine).


The brownish green complex (II) dissolves in benzene to give a red solution, although the methanol solution is brownish green. This indicates that complex (II) is converted into (III) in benzene, as is the case with the complex $[\pi - C_5H_5Ni(PBu_3)_2]^+Cl^{-1}$.

J. Organometal, Chem., 33 (1971) C73-C74

The reaction of (I) with $Ph_2P(CH_2)_2PPh_2$ in benzene similarly gave the complex $[\pi$ -C₅H₅Ni·Ph₂P(CH₂)₂PPh₂]⁺[C₆H₆·Cl]⁻ (IV), m.p. 58-60° (Found: C, 70.03; H, 5.61; Cl, 5.73. C₃₇H₃₅ClNiP₂ calcd.: C, 69.54; H, 5.31; Cl, 5.71%) while reaction of (I) with Ph₂P(CH₂)₃PPh₂ in dichloromethane and n-hexane mixed solvent gave the complex $[\pi$ -C₅H₅Ni·Ph₂P(CH₂)₃PPh₂]⁺[$\frac{3}{2}$ (CH₂Cl₂)·Cl]⁻ (V), m.p. 116-118° (Found: C, 57.56; H, 5.09; Cl, 19.91. C_{33.5}H₃₄Cl₄NiP₂ calcd.: C, 57.54; H, 4.87; Cl, 20.30%). The addition of a CH₂Cl₂ solution of Ph₂P(CH₂)₄PPh₂ to the n-hexane solution of (I) gave the green crystals (VI).

The NMR spectrum of (VI) shows a band at $\tau 2.46$ (intensity 20) due to the phenyl protons of Ph₂P(CH₂)₄PPh₂, a singlet at $\tau 4.74$ (intensity 2) due to the solvated CH₂Cl₂, a singlet at $\tau 5.00$ (intensity 5) due to the π -C₅H₅ protons and bands at $\tau 7.38$ (broad, intensity 4), $\tau 8.17$ (broad, intensity 4) due to the methylene protons of Ph₂P(CH₂)₄PPh₂. The complex (VI) is soluble in methanol, water, acetone and dichloromethane to give green solutions, but is insoluble in benzene and n-hexane. These results indicate that complex (VI) is a seven-membered chelated complex [π -C₅H₅Ni·Ph₂P(CH₂)₄PPh₂]⁺- [CH₂Cl₂·Cl]⁻ (Found: C, 59.59; H, 5.46; Cl, 15.90; Ni, 8.65. C₃₄H₃₅Cl₃NiP₂ calcd.: C, 60.88; H, 5.22; Cl, 15.89; Ni, 8.76%), though few seven-membered chelated complexes are known².

REFERENCES

- 1 M. Sato, F. Sato and T. Yoshida, J. Organometal. Chem., 26 (1971) C49.
- 2 J.D.O'Brien, The Chemistry of the Coordination Compounds, Reinhold Publishing Corporation, Princeton, N.J., p. 253.
- J. Organometal. Chem., 33 (1971) C73-C74